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Fitzpatrick,1

1 Institute for Fusion Studies, Univ. Texas at Austin, Austin TX 78712, USA
2 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California
94551, USA
3 Association Euratom/CEA, CEA Cadarache, F-13108, St. Paul-lez-Durance, France

Abstract. The response of an H-mode plasma to magnetic perturbations that are
resonant in the edge is evaluated using a fluid model. With two exceptions, the plasma
rotation suppresses the formation of magnetic islands, holding their widths to less
than a tenth of those predicted by the vacuum approximation. The two exceptions
are at the foot of the pedestal, where the plasma becomes more resistive, and at the
surface where the perpendicular component of the electron velocity reverses. The
perturbations exert a force on the plasma that is such as to brake the perpendicular
component of the electron rotation. In the pedestal, the corresponding Maxwell stress
drives the radial electric field in such a way as to accelerate ion rotation. Despite
the suppression of the islands, the perturbations give rise to particle fluxes caused by
magnetic flutter, with a negligible contribution from E×B convection. In the pedestal,
the fluxes are such as to reduce the density.

PACS numbers: 52.30.Ex, 52.55.Tn, 52.35.Vd,52.40.Fd
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1. Introduction

Edge Localized Modes (ELM) have the potential to cause an unacceptable erosion of the

divertor in ITER [1] and future fusion reactors. In present-day experiments, these modes

eject up to 20% of the energy stored in the edge pedestal. In ITER, by contrast, survival

of the divertor will require limiting the amplitude of heat pulses to approximately 1%

percent of the pedestal energy [1]. This has motivated the development of methods for

mitigating ELMs.

An effective ELM mitigation method consists of applying resonant magnetic

perturbations (RMP) to the edge [2]. Magnetic perturbations are said to be resonant

when they induce a finite electromotive force on closed field-lines lying inside the

plasma [3]. Resonant magnetic perturbations can be produced by currents flowing in

coils external to the plasma, or by a saturated intrinsic mode such as the edge harmonic

oscillation (EHO) [4, 5, 6]. In most experiments, such as those on COMPASS-D [7],

JFT-2M [8], NSTX [9], JET [10, 11] and DIII-D [12], the RMP cause the ELM to

be excited at reduced pedestal energy, resulting in smaller and more frequent ELM.

Remarkably, however, in low-collisionality experiments with in-vessel coils on DIII-D,

the RMP can completely eliminate the ELM [13, 14], This has been observed, in

particular, in discharges with shapes similar to those planned for ITER [15]. In these

experiments the RMP acts by degrading the confinement in the edge, thereby reducing

the width of the pedestal as well as its peak pressure gradient.

The effectiveness of the RMP method has motivated the design of an in-vessel

coil system dedicated primarily to suppressing the ELM on ITER [1, 16, 17]. Three

sets of coils are planned to be located behind the blanket shield module. Considerable

uncertainties remain, however, concerning the required perturbation amplitude as well

as the criteria for optimizing the mode spectrum. In addition to the differences in

the observed effects of the RMP on different machines, there are important questions

regarding the interpretation of the results, and in particular the role of magnetic chaos

and of the response of the plasma to the perturbations. We next describe the two main

paradigms for interpreting the effects of the RMP.

1.1. The magnetic-chaos model

The design of the RMP coils for ITER and the analysis of the RMP experiments have

relied on a model that attributes the suppression to the presence of magnetic chaos

[12,18,19,20,21]. According to this model, the RMP creates overlapping magnetic islands

which degrade confinement, reducing the pedestal gradients and thereby stabilizing the

ELM [14, 22, 23]. Almost all the experimental tests of this model, however, estimate

the size of magnetic islands by superposing vacuum magnetic perturbations on the

equilibrium. That is, they neglect the currents induced in the plasma by the RMP.

The magnetic chaos model has served as the main guide for the design of

experiments. Several features of the observations have been interpreted as supporting

this model, such as the enhanced transport and the splitting of the footprints on the
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divertor strike-plates. Simulations of transport in chaotic fields, however, show that the

electron temperature pedestal is eroded and widened to an extent that is difficult to

reconcile with experimental observations [24, 25, 26]. They also fail to account for the

often-observed increase in the temperature gradient in the pedestal, and predict fluxes at

the divertor strike plates that differ from observations by an order of magnitude. Lastly,

the chaos model predicts that ELM suppression should occur when the edge safety factor

q95 falls in a window of width δq95 ∼ 1, whereas in DIII-D, ELM suppression is only

observed in a very narrow window δq95 ∼ 0.1.

Explanations for these discrepancies have been proposed based on a number

of effects, all of which are omitted from the present paper. First, Tokar and his

collaborators have shown that heat flux limits can prevent the erosion of the temperature

profile and in some cases even lead to profile steepening [18, 20]. The flux-limited

transport model in these papers agrees with experiments even in the absence of

screening. Tokar and his collaborators included the role of screening in a subsequent

paper [27] in which they show that the deviations from neoclassical equilibrium induced

by the RMP lead to radial ion flows that exceed significantly the ion fluxes caused by

flow along the field lines. This allows their model to explain pump-out for the level of

RMP screening specified by Ref. [28]. Note that Refs. [18,20,27] take into consideration

particle sources and pinches. Lastly, Park et al. [29] have drawn attention to the role

of trapped particles. They also found that a screening factor was necessary in order

to successfully model the experimental results. Other simulations using MHD [30] and

two-fluid models [31, 32] have shown that plasma rotation has the effect of reducing

the width of pre-existing magnetic islands, thereby healing the magnetic chaos. These

works have led to increased interest in models that account for the response of the

plasma self-consistently.

1.2. Onset of locked modes

In the context of error fields and low-n RMP (n is the toroidal mode number), the

response of the plasma to a magnetic perturbation that is resonant in the core of the

discharge is well understood. Experiments [33,34,35,36,37,38] show that plasma rotation

greatly inhibits the growth of the RMP-driven magnetic islands. The RMP, however,

exerts a braking torque on the plasma rotation [39,40]. For sufficiently large amplitude,

a bifurcation occurs and the plasma near the resonant surface abruptly locks to the

error field [33,41]. The resonant island subsequently grows rapidly to a size comparable

to that of the corresponding vacuum island [42]. This bifurcation phenomenon has

sometimes been referred to by the term “mode penetration,” [33] but some confusion

has been created by the alternative use of this term by some authors to describe the

degree of spatial attenuation of the magnetic perturbation as it propagates inwards from

the edge. In this paper, we will refer to the bifurcation as a locked-mode onset (LMO).

The LMO exhibits several clearly identifiable signatures, such as (1) plasma spin-down,

(2) a magnetic pulse, and (3) a prompt flattening of the electron temperature near the
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resonance. Furthermore, removal of the RMP leads to (4) a spin-up of the induced

island that is easily observed on Mirnov coils.

The above phenomenology of the LMO is in qualitative agreement with MHD

theory, which shows that the suppression of the island is associated with singular

currents flowing near the resonant surface [43,44,45,46,41,47,48]. The bifurcation occurs

when the viscous force on the resonant layer, which acts to maintain the rotation, can

no longer balance the electromagnetic braking force created by the RMP.

Efforts to improve the quantitative predictions of the theory have led to the

realization that the non-resonant components of the field also affect the plasma rotation

by giving rise to a neoclassical toroidal viscosity (NTV), which exerts a braking force

proportional to the deviation of the rotation velocity from a value determined by

neoclassical effects [49,50,51,52]. Bécoulet et al. have examined the role of NTV forces

in the context of ELM-suppression experiments [53]. Since the NTV and resonant forces

are additive, however, in this paper we will restrict consideration to the resonant forces.

1.3. Two-fluid theory of island suppression and of the locked-mode onset

Before applying the error-field theory to the pedestal, one must face the fact that

the conditions pertaining to the edge differ substantially from those that apply in the

confinement region, where the dominant error-field (n = 1) resonances lie. First, the

sharp gradients in the pedestal give rise to diamagnetic drifts that can exceed the electric

(E×B) drift. Second, the proximity of the separatrix results in high magnetic shear and

strong shaping, particularly in the high-triangularity experiments with ITER-similar

shapes (ISS) [15]. Third, the combination of steep pressure gradients and a higher

toroidal mode number (n = 3 in DIII-D) leads to the likelihood of coupling between

neighboring resonances. Lastly, one expects the distinctive nature of momentum

transport in the edge to affect rotation braking by the RMP.

The effects on the plasma response of robust diamagnetic drifts and weak

collisionality were first investigated in a general context, using singular layer theory,

in Ref. [54]. This paper predicted that the locked mode threshold would be minimum

for resonant surfaces such that the perpendicular component of the electron rotation

vanishes, and that the RMP would modify rotation so as to brake the perpendicular

electron rotation. This was subsequently confirmed by experiments on TEXTOR [55,56].

Note that in H-mode the perpendicular electron rotation is generally opposite to the

ion rotation, so that electron braking entails ion acceleration. Around the same time as

the TEXTOR experiments, Cole and Fitzpatrick [57] revisited the theory of Ref. [54] in

an effort to explain the ALCATOR C-MOD observations of the scaling of the LMO

threshold with density [58]. Their model generalized that of [54] by including the

effects of finite ion temperature and particle diffusivity. Consistent with their focus

on core-resonant modes, however, they neglected the diamagnetic frequencies compared

to the plasma rotation frequency. Shortly thereafter Heyn et al. [28] used a kinetic

model in cylindrical geometry to investigate a set of experiments with the dynamic
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Table 1. Theoretical investigations of the plasma response. The papers marked with
a dagger (†) use locked modes as initial conditions. The paper marked with an asterisk
(∗) use a periodic-slab geometry.

MHD Two-fluid (Drift) Model Kinetic model

1D (Layer) Fitzpatrick Fitzpatrick & Hender, [43]
[45,41] Waelbroeck, [54]

Cole & Fitzpatrick, [57]
2D (cyl) Kikuchi [48] Kikuchi, [59] Yu, [60,63,64] Heyn [61]

Militello∗ [65]
Nardon, [62] Bécoulet [17]

3D (Tor.) Nardon, [66] Strauss,† [31] Park [29]
Izzo & Joseph,† [30] Reiser & Chandra† [32]

Liu [67]

ergodic divertor (DED) on TEXTOR. Kikuchi et al. [59] also simulated the TEXTOR

experiments using a reduced quasi-linear two-fluid model in cylindrical geometry and

confirmed the predictions of strong screening and of braking of the electron rotation.

Yu et al. [60] subsequently explained the asymmetry in the dependence of the TEXTOR

LMO threshold on neutral beam power in terms of the modification of the temperature

profile by the perturbation.

More recently, Heyn et al. [61] have applied their model to RMP experiments on

DIII-D. Their results concluded that in DIII-D, to an even greater extent than in

TEXTOR, islands are strongly suppressed, so that magnetic chaos does not extend

across the pedestal during these experiments. Their calculation used a kinetic model

with a Krook collision operator in cylindrical geometry. The cylindrical geometry

makes it necessary to modify the current profile in order to mock-up the divergence

in the safety-factor at the separatrix. Nardon et al. [62] used a two-fluid model, also in

cylindrical geometry, to show that including electron compressibility and drifts in a fluid

model leads to erosion of the density gradient in the pedestal for DIII-D-like parameters

and profiles. Their results confirm the strong suppression (away from the electron

rotation reversal surface) that was found in Ref. [61]. Table 1 provides a summary of

numerical and analytic investigations on the plasma response to RMP. Note that the

table as well as the preceding discussion omit all the research on the interaction of RMP

with preexisting rotating magnetic islands such as those caused by tearing modes.

Applying the knowledge gained from error-field experiments and theory to interpret

the results of RMP experiments, one expects that magnetic chaos will set in only after

neighboring resonant surfaces in the pedestal undergo LMO. An exception to this rule

is the narrow region at the foot of the pedestal, very near the separatrix, where the

electron rotation is slow, the resistivity relatively high and the distance between resonant

surfaces is less than the Larmor radius of the ions. In the rest of the pedestal, however,

locked modes are deliberately avoided in ELM mitigation experiments since they would

cause an undesirable transition to L-mode confinement [7]. In the present paper, we
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investigate explanations for the ELM-mitigation observations based on the predictions

of a two-fluid model for the response of the plasma in the edge.

1.4. Transport induced by suppressed RMP

In order to evaluate the prospects of the coil system planned for ITER, it is clearly

necessary to improve our understanding of the mechanisms whereby the RMP affect

the stability of the edge. In this paper, we will examine the particle transport induced

by screened RMP, as well as the effect of anomalous transport on the screening of the

perturbation by the plasma. We use a two-fluid model for the singular layer that allows

us to investigate the effects of anomalous transport phenomena, such as viscosity and

particle diffusivity, that were neglected in Ref. [61]. Our model omits other transport

effects, however, such as particle sources and pinches. Our use of a layer theory has the

consequence that the magnetic shear in our model is free from the constraints imposed

on cylindrical codes by the equilibrium model. Nevertheless, the results of our analysis

are in broad agreement with those of cylindrical codes [17,59,61,62].

The remainder of this paper is organized as follows. We begin in Sec. 2 by

describing the model used in our analysis. We next examine in Sec. 3 the various

quasilinear transport fluxes induced by the RMP. In Sec. 4, we describe the results of

numerical calculations of the normalized torque induced by the resonant response to

the perturbation. In particular, we examine the dependence of the normalized torque

on some experimentally important parameters, and compare the numerical and analytic

results. In Sec. 5, we apply our two-fluid model to the calculation of the reconnection

quotients for a model of the edge profiles introduced in Ref. [62]. Lastly, we summarize

and discuss the results in Sec. 6. In Appendix A, we describe some asymptotic analytic

results, which are used in the paper to benchmark the numerical solutions.

2. Formulation

We describe the response of the plasma in the resonant layer by using the “four-

field” model of Hazeltine et al. [68, 69] We note that the the four-field model uses

a finite Larmor radius (FLR) expansion for the ion dynamics (kρi � 1, where ρi is

the ion Larmor radius). In the low-collisionality regime of the DIII-D experiments,

however, the resonant layers are narrower than the Larmor radius. Several studies

of tearing and resistive kink growth rates have shown, however, that in the linear

regime, the FLR assumption yields results in good agreement with calculations that

account for the nonlocal nature of ion gyration (see [70, 71] and references therein).

Of greater consequence is the neglect of neoclassical effects and electron heat transport.

Simulations using the XGC0 code [29,72] provide perspective on the role of these effects.

We adopt the following additional simplifications. First, we neglect the effects of

field-line curvature. Second, we neglect electron inertia in Ohm’s law. This assumption

is violated for the resonant surfaces in the center of the pedestal, where the island
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suppression is the strongest. [61] Comparison of our results with those of Ref. [61]

suggest that the effects of electron inertia are mild. Third, we assume that the resonant

layer is sufficiently thin that the excitation of ion-acoustic waves is negligible, so that

we may neglect the parallel compressibility of the ions. This assumption, which reduces

the number of fields to three, is justified when k‖cs � ω∗, where k‖ = k ·B0/B0 is the

wavevector in the direction of the background magnetic field B0, cs = (Te/mi)
1/2 is the

ion-sound speed, and ω∗ = kyTe/eBLn is the drift frequency. Here, ky is the azimuthal

wavevector, Te the constant electron temperature, mi the ion mass, and Ln = ne/|∇ne|
a scale-length describing the gradient of the electron density ne. We note that Ref. [32]

also used the four-field model but retained curvature, ion compressibility, and electron

inertia. Their initial conditions, however, consisted of a plasma with fully reconnected

islands, whereas the analysis presented here assumes that the RMP is applied to a

plasma with initially good (simply nested) flux surfaces.

The state of the plasma is represented in terms of the normalized quantities A, ϕ and

ne as follows. The magnetic field is B = B0(ẑ−ẑ×∇A) where ẑ = B0/B0 is a unit vector

in the direction of the magnetic field at the resonant surface of interest, and A = ẑ ·A
is the axial component of the magnetic potential, and the lengths are normalized to the

minor radius a. The electric drift velocity is vE = vA(ẑ×∇ϕ), where ϕ is the electrostatic

potential and vA = B0/
√
µ0min0/Z is the Alfvén velocity, n0 is the (dimensional)

electron density, and Z is the effective charge. The components along the background

magnetic field of the normalized current and vorticity are J = −∇2A and U = ∇2ϕ,

respectively. Lastly, the plasma density ne is normalized so that the diamagnetic electron

drift velocity is vde = vA(ẑ×∇ne). Under the assumptions described above, the model

describing the resonant layer reduces to the following equations describing the evolution

of ϕ, ne, and A:

∂ne
∂t

= − vE · ∇ne + ρ2
s∇‖J +D∇2ne; (1)

∂U

∂t
= − vE · ∇U −∇ · [(vdi · ∇)∇ϕ] +∇‖J + µ∇2(U + τ∇2ne); (2)

∂A

∂t
= − vE · ∇A+∇‖ne − ηJ. (3)

Here ρs = cs/aωci where ωci = eB0/mi is the ion cyclotron frequency, D and µ, are the

particle diffusivity and the viscosity coefficient, S = µ0vA/η is the Lundquist number,

η is the resistivity, vdi = τvde/Z is the ion diamagnetic velocity, and τ = Ti/Te. Note

that if the transport is dominated by collisional processes, as assumed in Ref. [57], then

D = βeS, where βe = 2µ0nTe/B
2
0 is the ratio of electron thermal and magnetic pressures.

Here, we allow D to be independent of S in order to model anomalous diffusive processes.

We consider a reference state consisting of an inhomogeneous plasma flowing in a

sheared magnetic field. This reference state is described by

ϕ0 = ωEx; ne0 = −ω∗x; A0 = x2/2(a/Ls),

where ωE is the E × B rotation frequency of the plasma in the laboratory frame and

Ls = R0q/ss, where ss = d log q/d log r|r=rs is the magnetic shear. In the singular
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layer, the azimuthal derivatives are small compared to the derivatives across the layer,

∂/∂y � ∂/∂x. It is convenient to rescale the variables by using the collisional layer

width δ = η1/3 according to X = x/δ, T = tδ, ρ = ρs/δ, and Ξ = ξ/δ2 where “Ξ”

symbolizes the new normalized fields. With these normalizations and using Poisson

brackets defined by [f, g] = ẑ · (∇f ×∇g), the equations take the form

∂ne
∂T

= − [ϕ, ne] + ρ2[J,A] +D∇2ne (4)

∂U

∂T
= − [ϕ,U ]− τ∇ · [ne,∇ϕ] + [J,A] + P∇2(U + τ∇2ne) (5)

∂A

∂T
= − [ϕ− ne, A]− J (6)

where P = µ/η and D = D/η, and ∇2 = ∂2/∂X2.

We seek solutions of the form

ξ(X, y, t) = ξ̄(X) + <
[
ξ̃(X)eiy−iω0t

]
(7)

where < denotes the real part, ξ = (ne, ϕ, A) and where the perturbation amplitudes ξ̃

are assumed small compared to the y-averaged fields ξ̄: ξ̃ � ξ̄. Here ω0 is the rotation

frequency of the RMP in the lab frame. The primary goal of our analysis is to evaluate

the change of the background fields

ξ̄ = ξ0 + δξ,

where ξ0 describes the background field before the application of the RMP. This goal

is achieved in two steps. In the first step, described in Sec. 2.1, we evaluate the linear

response ξ̃ of the plasma to the applied RMP. In the second step, described in Sec. 3,

we use the linear response to evaluate the quasilinear modifications to the background

profiles.

2.1. Linear theory of the singular-layer response

To lowest order in the RMP amplitude, the perturbations are described by the linearized

equations of motion.

Qñe −Q∗ϕ̃− iXρ2Ã′′ = Dñ′′e ; (8)

Qiϕ̃
′′ − iXÃ′′ = P (ϕ̃+ τ ñe)

′′′′; (9)

QeÃ− iX(ϕ̃− ñe) = Ã′′. (10)

where the primes represent radial derivatives, ξ′ = dξ/dX, Q = −i(ω0 − ωE)/γr,

Q∗ = −iω∗/γr, where γr = δ1/3 is the reconnection rate for a mode that is marginally

stable to an ideal mode, such as the internal kink. Lastly, Qi = Q + τQ∗, and

Qe = Q − Q∗. At large distances from the resonant layer, X � 1, the solutions of

the layer Eqs. (8)-(10) must be matched to the solution outside the layer which takes

the form

Ã ∼ Ã0 + Ã1|X|+O(X2); (11)

ϕ̃ ∼ − iQ(Ã0X
−1 + Ã1sign(X)); (12)

ñe ∼ (Q∗/Q)ϕ̃. (13)
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The result of the linear solution of the layer equations is contained in the quantity ∆̂

that represents jump in the ratio of the coefficients of the small and large terms in the

asymptotic expansion:

∆̂(Q) = 2Ã1/Ã0. (14)

In the following section, we will extend previous calculations of ∆̂(Q) to the present

model.

2.2. Ballooning transformation

The equations (8)-(10) represent an 8th order system of ordinary differential equations.

Fortunately, Fourier transforming these equations reduces the order of the system to

two. Note that the Fourier transform variable k is proportional to the ballooning

angle [73]. That is, k measures the distance along the field line. When interpreting

the wavefunctions in ballooning coordinates it is useful to recall that, due to magnetic

shear, quantities that vary slowly along the field lines develop strong radial gradients.

As a result, dissipation becomes increasingly important at large k.

The transformed equations are

Qn̂e −Q∗ϕ̂− ρ2dĴ

dk
= −Dk2n̂e; (15)

Qik
2ϕ̂+

dĴ

dk
= − Pk4(ϕ̂+ τ n̂e); (16)

QeÂ+
d

dk
(ϕ̂− n̂e) = − Ĵ . (17)

where Ĵ = k2Â is the current. Eliminating the current between the electron continuity

and the vorticity equation yields the ion continuity equation,

Qn̂e −Q∗ϕ̂+Qik
2ρ2ϕ̂ = −Dk2n̂e − Pk4ρ2(ϕ̂+ τ n̂e), (18)

which can be used to express n̂e in terms of ϕ̂. In order to reduce the system of equations

(15)-(17) to a single second order equation, it is convenient to introduce the electron

stream function Υ̂ = ϕ̂ − n̂e. Equation (18) makes it possible to express ϕ̂ and n̂e in

terms of Υ̂:

n̂e =
Q∗ −Qiρ

2k2 − Pρ2k4

Qe + (D +Qiρ2)k2 + (1 + τ)ρ2Pk4
Υ̂; (19)

ϕ̂ =
Q+Dk2 + τPρ2k4

Qe + (D +Qiρ2)k2 + (1 + τ)ρ2Pk4
Υ̂. (20)

From Ohm’s law (17) we further find that

Â = − 1

k2 +Qe

dΥ̂

dk
. (21)

Substituting these result into either the continuity or vorticity equation, we obtain

d

dk

(
k2

k2 +Qe

dΥ̂

dk

)
=

(
QQi +Qi(D + P )k2 + PDk4

Qe + (D +Qiρ2)k2 + (1 + τ)ρ2Pk4

)
k2Υ̂. (22)
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This is a second-order differential equation governing the plasma response in the singular

layer. Aside from minor differences in notation, it is essentially equivalent to that used

in Ref. [57].

Pegoraro and Schep [74] have shown that in some regimes it is more convenient to

solve for the current instead of the electron streamfunction Υ̂. Using Eq. (21), it is easy

to obtain the equation for the current in the layer,

d

dk

(
Qe + (D +Qiρ

2)k2 + (1 + τ)ρ2Pk4

(QQi +Qi(D + P )k2 + PDk4)k2

dĴ

dk

)
−
(
k2 +Qe

k2

)
Ĵ = 0. (23)

In the inviscid limit, this form of the layer equation admits analytic solutions in both

the collisional and semi-collisional regimes [74]. Solutions of the layer equations in

asymptotic regimes are described in Appendix A.

2.3. Asymptotic matching in ballooning space

The matching conditions on the current require calculating the higher order terms in

the asymptotic expansion of the solution, since the lowest-order terms vanish. For large

X, the mode equations reduce to Qñe = Q∗ϕ̃, Ã = i(X/Q)ϕ̃, and

d

dX

[
(X2 +QQi)

dϕ̃

dX

]
= 0.

The first two terms of the series solution are

ϕ̃(X) = −iQÃ0X
−1

(
1− QQi

3
X−2 +O(X−4)

)
It follows that ϕ̃ ∼ −iQÃ/X, where

Ã ∼ Ã0

(
1− QQi

3
X−2 +O(X−4)

)
+ Ã1

(
|X|+O(X−1)

)
; (24)

We obtain the small-k asymptotic behavior of the layer response in ballooning space

by taking the Fourier transform of the asymptotic expansion (24), after introducing the

regularizing factor exp(−ε|X|), and subsequently taking the limit ε→ 0. There follows

Υ̂ ∼ −Qe

(
Ã0

2
sign(k) +

Ã1

π
k−1 +O(k)

)
; (25)

Ĵ ∼ Ã0
QQi

6
|k|3 − Ã1

π
. (26)

The above matching conditions determine the matching parameter ∆̂(Q), which itself

determines the screening of the perturbation and the braking torque on the plasma.

3. Quasilinear fluxes

To evaluate the effect of the resonant magnetic perturbations on the background fields,

we average the steady-state (∂/∂t = 0) layer equations along the azimuthal direction y.

We use the identity

〈[f, g]〉 =
d

dX
〈f∂yg〉,
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where ∂y = ∂/∂y and

〈f〉 =

∮
dy

2π
f(X, y).

Taking the azimuthal averages and integrating once across the layer, we find

〈ϕ∂yne〉 − ρ2〈J∂yA〉 = D (n̄′e +Q∗) ; (27)

〈ϕ∂yU〉 − 〈J∂yA〉+ τ
d

dX
〈ne∂y∂Xϕ〉 = P V̄ ′′i ; (28)

〈(ϕ− ne)∂yA〉 = Ā′ −X; (29)

where V̄i = d(ϕ + τne)/dX is the background ion velocity (the sum of the electric and

diamagnetic drifts). Substituting the form (7) of the solution and carrying out the

average along y, there follows

1
2
=[ϕ̃ñ∗e − ρ2J̃Ã∗] = D (n̄′e +Q∗) ; (30)

1
2
=[ϕ̃Ũ∗ + τ(ñeϕ̃

′∗)′ − J̃Ã∗] = P V̄ ′′i ; (31)
1
2
=[(ϕ̃− ñe)Ã∗] = Ā′ −X; (32)

where ξ∗ is the complex conjugate of ξ and = denotes the imaginary part. The above

equations may be simplified by noting that

=[ξ̃∗ξ̃′′] = =[ξ̃∗ξ̃′]′.

We may use this identity to integrate the vorticity equation, Eq. (31), across the layer.

This yields the well-known force-balance equation,

1
2
=[Ã′Ã∗] = P [[V̄ ′⊥i]]; (33)

where [[·]] represents the jump across the layer and we have used the asymptotic property

ϕ̃ ∼ ñe = O(X−2) to drop the term =[(ϕ̃ + τ ñe)ϕ̃
′∗]. Equation 33 expresses the fact

that in steady state, the J×B forces acting in the resonant layer must be balanced by

a viscous force related to the jump in the gradient of the background velocity across the

layer.

We next turn our attention to the continuity equation. The two terms on the

left-hand side of Eq. (30) correspond to advective particle fluxes caused by, respectively

(i) eddies, created by the interaction of the RMP with the rotating plasma, that carry

particles across the magnetic field and

(ii) electron currents along the perturbed magnetic field (magnetic flutter) that

neutralize the ion polarization currents.

The possible role of the driven eddies in accounting for the effect of RMPs on the density

was first noted by Nardon et al. [66], who observed that in an MHD model the scaling of

this term with the resistivity resulted in it being too small to account for observations,

given the small resistivity in experiments. Taking into account electron compressibility,

however, has the effect of introducing the ion-sound Larmor radius ρs, thereby placing

a lower bound on the decrease of the singular layer thickness with η. Because of its

neglect of ρs, MHD may underestimate the effect of the eddies on the density. The
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second term in Eq. (30) is a two-fluid effect, as indicated by the ρ2 coefficient. It is

identical in form to the J×B force, so that we conclude that the same effect that gives

rise to the resonant force in MHD also gives rise to a density jump across the layer.

In order to evaluate the effect of the quasilinear fluxes on the density, we integrate

Eq. (30) radially across the layer and express the resulting pumpout as

[[n̄e]] = Vflutt + Vconv, (34)

where

Vflutt = ρ2=[[Ã′Ã∗]]/2 (35)

is the outflow velocity due to the magnetic flutter transport and

Vconv =
1

2

∫ ∞
−∞

dx=[ϕ̃ñ∗e] (36)

is the outflow velocity due to the eddies. In terms of the wavefunctions in ballooning

space, the latter term takes the form

Vconv = − 1

4π

∫ ∞
−∞

dkW(k) |Υ̂|2 (37)

where the weight function W is

W(k) = =
[

Q∗ −Qiρ
2k2 − Pρ2k4

Qe + (D +Qiρ2)k2 + (1 + τ)ρ2Pk4

]
. (38)

The integrand in (37) is regular at the origin and integrable at large k, as can be seen

from the following alternative expression of W :

W(k) = −ik2 (Q∗ −Qiρ
2k2)D + PQiρ

2k2(1− τρ2k2)

(D + (1 + τ)Pρ2k2)2k4 − (Qe +Qiρ2k2)2
(39)

The above form of the weight function shows that the perpendicular (eddy-driven) pinch

vanishes if D = 0 and either P = 0 or ρ = 0.

Our numerical calculations show that the eddy-driven flux never exceeds a few

percent of the flutter flux for the parameters of interest in experiments, so we will

henceforth neglect it. We note that Beyer et al. [75] have shown that in toroidal geometry

the eddy-driven flux dominates over the parallel transport. The cause of the apparent

conflict between the conclusions of that paper and the conclusions reached in the present

paper is uncertain. One possibility is that curvature enhances the convective flux, in

which case the present paper will underestimate the pump-out in toroidal experiments.

Another possibility is that the electrostatic approximation used in [75] causes it to

underestimate the flutter flux. Answering the question of the relative importance of

the current-mediated flutter flux, which is the dominant transport mechanism in our

model, and the eddy-mediated flux, which is the dominant transport mechanism in [75],

requires a toroidal two-fluid calculation and falls outside the scope of the present paper.

Due to the singularity of A(k) and unlike the eddy-driven flux, the pumpout caused

by the magnetic flutter cannot be calculated by a Fourier space integral, but its value is

easily determined by integrating across the layer. In fact, comparison of Eqs. (35) and
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(33) shows that the flutter-induced pumpout is proportional to the braking caused by

the RMP:

[[n̄e]] = ρ2P [[V̄ ′⊥i]]/D.

This reflects the fact that the flutter pumpout results from the same radial currents

that exert the resonant braking force. It can thus be thought of as a resonant radial

pinch. Restoring the dimensions, the above identity takes the form

[[n̄e]]

n0

=
µ

D

[[V̄ ′⊥i]]

ωci
. (40)

For a given equilibrium and RMP spectrum, the right hand side of the above expression

is proportional to the acceleration of the plasma in the edge. Eq. (40), however, must

be corrected for the presence of neoclassical forces. We consider this next.

Following an argument due to Fitzpatrick [45] and recently applied to the particle

transport problem by Yu and Günter [64], the above formula must be amended to

account for the presence of neoclassical forces that strongly damp deviations of the

poloidal velocity from its unforced value. As a result of these forces, the change in

velocity caused by the RMP is almost entirely in the toroidal direction, δV = δV̄ζ eζ ,

where δV̄ζ = δV̄⊥Bζ/Bθ. The corresponding viscous force must balance the toroidal

component of the perpendicular electromagnetic force, Tζ = TEMBθ/Bζ . Force balance

is thus achieved when

[[n̄e]]

n0

=
µ

D

[[V̄ ′⊥i]]

ωci

(
Bζ

Bθ

)2

. (41)

A more perspicuous form of the force-balance condition follows from the estimate

[[V̄ ′⊥i]] = −δV̄⊥i/LpN , where δV̄⊥i, Lp, and N are respectively the change of the

perpendicular velocity, the pressure gradient scale-length (serving as an estimate of the

pedestal width), and the number of resonant surfaces in the pedestal (for an n = 3 RMP

in DIII-D, N ' 6). The total pumpout caused by all the resonances in the pedestal is

thus

[[n̄e]]

n0

= − µ
D

δV̄⊥i
V∗i

(
ρθ
Lp

)2

. (42)

where ρθ = (Bζ/Bθ)ρs is the poloidal gyroradius. We next discuss the implications of

the above estimate, which is one of the most important results of the present paper.

The first implication of the above result, Eq. (42), is that it predicts that when

the perpendicular electron velocity is in the electron diamagnetic direction, the pedestal

density will decrease as a result of the application of an RMP, as observed in experiments,

even in the absence of magnetic chaos. Ivanov et al. [76] reached similar conclusions

with regards to changes in plasma rotation, pointing out that the explanation for the

acceleration of the edge in terms of losses along open field lines in a chaotic magnetic field

is fundamentally indistinguishable from the acceleration caused by isolated resonances:

both are caused by the radial current induced by the RMP, and the nature of the

mechanism does not change when neighboring islands overlap.
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Another interesting feature of our result, Eq. (42), is that although it predicts

density pumpout in the edge, where the perpendicular rotation of electrons and ions

is in opposite directions, it also predicts inwards particle fluxes at resonances in the

core where the electric drift dominates, so that electrons and ions rotate in the same

direction. Upon application of an RMP, in other words, the core plasma inhales. The

magnitude of the pump-in may be determined from Eq. (41) in the same way as for the

edge, except that the scale length for the change in density is now given by the much

larger distance between the resonant surface and the edge, so that the magnitude of

the effect is smaller. A similar effect was predicted for magnetic islands locked to the

wall in Ref. [77], and was later demonstrated through numerical simulations in Ref. [64].

The effect may be understood as a consequence of the frozen-in law for electrons: since

the electrons are unable to cross the separatrix once a magnetic island exceeds the

tearing layer width, the existence of an electric field within the separatrix, whether

from neutral beams or other causes, implies the presence of a diamagnetic drift that

cancels the electric drift [3]. The formation of the pressure-gradient that creates the

diamagnetic drift gives rise to a pumpout or a pump-in, according to the sign of the

electric field.

The most significant implication of the above result relates to the scaling of the

pumpout with the pedestal magnetization parameter ρθ/Ln. Whether the width of the

pedestal is determined by neutral penetration [78] or stability considerations [79], it

is generally believed that its magnetization parameter will be smaller in ITER than

in present-day machines. This raises the possibility that ELM suppression would be

ineffective if it depends on the density pumpout. It should be noted, however, that

pumpout occurs in nearly all RMP experiments, while ELM suppression is much more

difficult to achieve. In DIII-D, in particular, the window in the edge safety factor q95 for

the suppression of the ELM is very narrow. Thus, while it is clear that the pumpout is

insufficient to obtain suppression, it is unclear whether it is necessary.

We next describe the results of numerical solutions of the layer equation and

compare these to the analytic results where appropriate.

4. Numerical Studies

In this section we present numerical solutions of the resonant layer equation for

parameters relevant to the DIII-D experiment. In particular, we examine the dependence

of the screening on particle diffusivity, on the viscosity, and on the collisionality.

4.1. Effect of particle diffusivity

In the early work on the plasma response to RMP [43, 54], the island suppression

factor was found to exhibit three resonances when the perturbation frequency matched

the Doppler frequencies of the ions, the electrons, and the guiding centers (which is

identical to the E ×B frequency in a slab model). Subsequent numerical [59,60,63,65]
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Figure 1. Effect of the particle diffusivity on the ion resonance in the electromagnetic
force acting on the resonant layer.

and experimental [56, 55] investigations have found only a single resonance at the

electron Doppler frequency. We have found that particle diffusivity is responsible

for the disappearance of the other resonances. Fig. 1 shows the normalized force

F⊥ = =[1/∆̂(Q)] as a function of the normalized frequency ω/γr = iQ. the ion

resonance is extremely sensitive to particle diffusivity, so that even very small diffusivity

will regularize the response.

4.2. Effect of viscosity

The various investigations of the plasma response to RMP have used values of the

viscosity that vary from zero to two orders of magnitude above the turbulent viscosity,

making comparisons difficult. For example, although it includes a model for Landau

damping, the MARS-F code neglects viscosity entirely [67]. Likewise, the code used by

Heyn et al. [61] does not account for diffusive processes. The neoclassical edge transport

code XGC0, by contrast, does model the turbulent transport as a radial random

walk [29]. Lastly, most of the MHD and two-fluid calculations, including the present

work, use spatially uniform estimates of the viscosity based on anomalous transport.

Yu et al., however, have used artificially enhanced values of the viscosity in some of

their work to model the effect of poloidal rotation damping on the balance between

viscous and electromagnetic forces [63, 64]. While this approach models faithfully the

zonal (m = 0) components of the flow, it overestimates by two orders of magnitude the

viscosity experienced by the resonant (m = nq) components.

It is thus of interest to examine the dependence of the plasma response on the

viscosity to gain insight into the effects of the wide disparities in viscosity found

in the literature. Fig. 2 shows the effect of the viscosity on the normalized force

F⊥ = =[1/∆̂(Q)] in the collisional limit defined by ρ = 0. The continuous lines show

the results obtained by integrating Eq. 22 numerically for two different values of the

Prandtl number, P = 200 and P = 0.2. The remaining lines show the analytic results
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Figure 2. (color online) Effect of the viscosity and particle diffusivity on the
electromagnetic force F⊥ acting on plasma near the resonant surface, in the collisional
limit (ρ = 0). The parameters are ω∗/γr = 1, τ = 0, and D = P/2, where P is
indicated in the Figure.

for the inviscid regime, given in Eq. (A.6) (dash-dotted line); the visco-resistive limit

in Eq. (A.9) (dashed line); and the ideal limit Eq. (A.2) (dotted line). Note that the

visco-resistive limit only applies for very small rotation frequencies, Qe � (P/Qi)
−1/2,

in agreement with the analytic estimate for the regime boundary. The Figure shows

that in the collisional regime, for the frequencies of interest in experiments (Q ∼ 1),

changing the viscosity by a factor of a thousand only changes the force by a factor of

order unity.

We next consider the effect of viscosity in the low-collisionality regime relevant

to DIII-D. Fig.3 shows the normalized force for a Larmor radius equal to 5 times

the resistive layer width, ρ = 5. The continuous lines show the results obtained by

integrating Eq. 22 numerically for P = 200 and P = 0.2, with D = P/2. The other

lines show the analytic result in the ideal limit described by Eq. (A.2) (dotted line),

the inviscid semi-collisional regime given in Eq. (A.14) (dashed line), and the diffusive

semi-collisional regime described in Eq. (A.16) (dash-dotted). We see that in the low-

collisionality regime, the normalized force is much more sensitive to the anomalous

transport parameters than in the collisional regime. This can also be seen by dividing

the matching parameters given the analytic results in Eqs. (A.14) and (A.16),

∆̂(D = 0)

∆̂(D � 1)
' 1.5

(
Q2(1 + τ)

Dρ2

)1/4

.

In the semi-collisional regime, ρ� 1 so that the above ratio is small. The effect on the

screening factor, given by |∆̂|−1 in the constant-A regime, is similar.

A noteworthy feature of Fig. 3 is the oscillations in the force for large values of

the frequency. These are caused by resonances with kinetic Alfvén waves, and were

studied previously by Drake et al. [80] in the inviscid regime (P = 0). Note that similar

oscillations occur for ω > 0. These were left out of the range of Fig. 3 to improve the

readability of the graph for small ω. The large-ω oscillations may be of importance
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Figure 3. (color online) Effect of the viscosity and particle diffusivity on the
electromagnetic force acting on the resonant layer in the semi-collisional regime for
ρ = 6, a value representative of the DIII-D pedestal. The parameters are ω∗/γr = 1,
τ = 1, and D = P/2, where P is indicated in the Figure

in the core of rapidly rotating plasmas, or near shear-reversal surfaces. In the edge of

fusion experiments, however, the value of iQ = ω/γrec rarely exceeds unity.

4.3. Collisionality and the effect of electron compressibility

Another important parameter influencing the plasma response is the electron

compressibility, measured by ρ, which represents the ratio of the Larmor radius to

the resistive layer width. We have seen in the previous Subsection that the electron

compressibility can strongly influence the sensitivity of the results to the anomalous

transport coefficients. Fig. 4 compares the dependence of the force F⊥ on the normalized

frequency ω/γrec. The two solid lines show the results obtained by integrating Eq. 22

numerically for ρ = 0.0 and ρ = 5.0. The other lines show the analytic result in

the ideal limit described by Eq. (A.2) (dotted line), the visco-resistive regime given

in Eq. (A.9) (short-dashed line), and the diffusive semi-collisional regime described in

Eq. (A.16) (long dashed line). The Figure shows that for small values of (ω−ω∗e)/γrec,

where the effects of the RMP are strongest, neglecting two-fluid effects can lead to

a substantial underestimation of the amplitude of the resonant force F⊥. For larger

rotation frequencies, however, the effect is negligible.

Lastly, we note that the effect of neglecting ρ compensates the effect of neglecting

P and D that was described in the previous subsection. As a result, the predictions of

inviscid resistive-MHD codes do not differ greatly from those of two-fluid models with

anomalous transport coefficients.

4.4. Effect of Low-shear

We conclude this Section with a brief note on the effect of magnetic shear. An interesting

feature of some equilibrium reconstructions is the presence of a narrow region towards
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Figure 4. (color online) (color online) Comparison of the electromagnetic force acting
on the resonant layer in the collisional limit (ρ = 0) and for a semi-collisional case with
ρ = 6, a value representative of the DIII-D pedestal. The other parameters are τ = 1,
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Figure 5. (color online) Normalized electromagnetic torque for a resonance surface
with weak shear, showing the near vanishing of the torque in the ion direction.

the foot of the pedestal where the shear is significantly reduced by the presence of

a strong bootstrap current driven by the pressure gradient in the pedestal. In the

presence of such a weak shear region, the reconnection time is increased, so that the

effect of the diamagnetic drifts is more pronounced. Our calculations show that this

leads to a pronounced asymmetry of the force curve, creating a band of frequencies in

the ion direction where the force is negligible (Fig. 5). If the force actually vanished for

a finite value of the frequency, this flux surface would be immune to locked-mode onset,

since the condition for the balance between the viscous and resonant electromagnetic

force could then always be satisfied. Given the numerous other rational surfaces in the

edge, it is doubtful whether this possibility is of any importance in explaining the RMP

observations, but it may be of interest in other circumstances, such as for low-density

locked modes in reversed shear discharges.
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Figure 6. (color online) Profiles of the logarithm of the resistivity η, the electron
temperature Te, and the safety factor q as a function of the normalized minor radius
r.

5. Application to a model for an H-mode pedestal

In this section, we examine the predictions of the theory described above when applied

to a model of an H-mode pedestal that is representative of the DIII-D experiment [62].

The model used here is similar to but distinct from that of Ref. [62]. We consider the

following parameters: a minor radius a = 0.6 m, a major radius R0 = 1.7 m, a toroidal

field on axis B0 = 1.95 T, and a flat density profile with ne = 3.5 · 1019 m−3. We model

the temperature by

Te(r) = Te0{1− tanh[(r − r0T )/δr0T ]}(1− k2r
2)/2,

where all the radial variables are normalized to a and Te0 = 1.6 keV; r0T= 0.99; δr0T=

0.01; and k2 = .75.

For the safety factor profile, we use the following combination of log functions

q(r) = 1.− 1.2 log(1− r2) + 0.3 r2 log(1− r2).

This profile takes into account the effect of the separatrix on the magnetic shear, an

effect that affects the plasma response in the singular layer but cannot be properly

modeled with an initial-value cylindrical code because the corresponding current profile

is unstable to tearing modes. The electron temperature and safety-factor profiles are

shown in Fig. 6. Lastly, for the profile of the radial electric field we use the following

model:

Er(r) = Êr(r)
(1− k4r

2)2

(1− k4)2
,

where k4 = 0.75 and Ê(r) describes the variation of the electric field in the edge through

a linear combination of a tanh function and a Gaussian:

Êr(r) =

{
E1

(
1 + tanh

[
−r − r1E

δr1E

])
+ E2 exp

[
−
(
r − r2E

δr2E

)2
]}

,
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Figure 7. Profiles of the E ×B, diamagnetic (VD), and perpendicular electron (Ve)
and ion (Vi) velocities in the edge.

where r1E = 0.96, δr1E = 0.03, r2E = 0.98 δr2E = 0.015, E1 = 4.0 V/m, and E2 = −10.0

V/m . The corresponding profiles for the perpendicular velocity of the electrons (Ve),

guiding centers (VE), and ions (Vi) in the edge are shown in Fig. 7, and the global profile

of the n = 1 Doppler frequency is shown in Fig. 10. Note that with these profiles, the

ion-sound Larmor radius ρs is approximately twice the width of the tearing layer, so

that two-fluid effects such as parallel electron compressibility are important.

Fig. 8 shows the reconnection quotient Sm = Bn/B
full
n = A/Afull = |∆̂|−1 evaluated

from the layer theory. Here Bn is the perturbed magnetic field normal to the equilibrium

flux surface, and Afull is the amount of flux that would reconnect in the absence of plasma

rotation. In general, Afull is larger but comparable to Avac, the vacuum perturbation,

due to the amplifying effect of gradients in the equilibrium pressure and current. The

reconnection quotient is very small except at the electron reversal surface and at the

foot of the pedestal. It is particularly small in the steepest part of the pedestal, due to

the increased suppression caused by the strong diamagnetic flows. In the center of the

pedestal the suppression factor is of order 10−4, corresponding to islands that are only

a few percent of their vacuum widths.

Fig. 9 shows the quasilinear electromagnetic force acting on the plasma in the

resonant layers normalized to the squared amplitude of the screening current. The

force diverges and changes sign at the electron reversal surface, as expected. It also

becomes large at the foot of the pedestal due to the reduced perpendicular velocity

and the increased collision frequency. The combination of the strong braking force,

the substantial reconnection quotient and the vanishing separation between successive

resonant surfaces leads to the expectation that the foot of the pedestal will exhibit

magnetic chaos.

In order to calculate the change in the velocity profile, we sum the products of

the resonant forces with the changes in velocity caused by unit forces located at the

resonances. These are obtained by solving the momentum transport equation with
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Figure 8. (color online) Reconnection quotient Bn/B
full
n = A/Afull for the chosen

profiles. The vertical lines represent the mode-rational surfaces for n = 3. Presently
available theory leads to the expectation that the plasma rotation at the q = 10/3
resonant surface near the electron velocity-reversal surface should lock to the RMP
field, eliminating the suppression of reconnection by plasma flows and allowing the
island to grow to its full amplitude.
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Figure 9. Normalized force Fy acting on the plasma at the resonant surfaces, as a
function of the minor radius r. Note the divergence at the electron velocity reversal
surface and the comparatively small value of the force in the pedestal. The resonant
forces brake the plasma rotation to the left of the reversal surface, but accelerate it to
the right, in the pedestal region.
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a delta-function force applied at the resonant surface of interest and with a constant

viscosity coefficient. In cylindrical geometry the corresponding change in velocity δV̂m(r)

takes the form

δV̂m(r) = −rm
µ

{
log(rm), r < rm,

log(r), r > rm,

where the resonant radii satisfy nq(rm) = m. The total velocity change, taking into

account poloidal rotation damping, is then

δV̂ =
2n

R0µ0mine0a

∑
m

r2
m|Afull|2=[1/∆(rm)] δV̂m(r), (43)

where Afull should in principle be obtained by solving the mode equation for the chosen

current and pressure profiles. For simplicity, we use instead the vacuum amplitudes of

the various harmonics as calculated by the SURFMN code for the I-coils on DIII-D.

The singularity of the braking force at the reversal surface presents a difficulty,

however, when calculating the change in velocity caused by the RMP, since the resonant

surface closest to the electron velocity reversal surface dominates the response. In fact,

the quasilinear evaluation of the change in velocity is inapplicable at the closest resonant

surface, since the force at that surface is well in excess of that needed to lock the plasma

rotation. We thus assume that the rotation is locked at that surface, and evaluate the

force applied by the RMP to maintain the locked mode by requiring that the electron

velocity vanish at the q = 10/3 surface, consistent with the trapping of the electrons in

the locked island. That is, we replace Fy(r10) in Eq. 43 by a value evaluated so that

ve(r10) = 0. At all other surfaces we use quasilinear theory to evaluate the resonant

forces. Fig. 10 shows the resulting change in the Doppler frequency δωE = k · δVE, as

well as the final velocity ωRMP
E . The change in velocity is qualitatively consistent with

observations. In particular, the plasma accelerates in the edge and brakes in the core,

corresponding to the opposite sign of the electron rotation in these two regions.

6. Summary

We have examined the response of the plasma edge to Resonant Magnetic Perturbations

by applying a two-fluid model to the singular layers centered at the resonant surfaces.

We have used this model to calculate the island reconnection quotients, the plasma

acceleration, and the density pumpout for parameters representative of an H-mode edge

plasma. Unlike studies using cylindrical models, in which the logarithmic singularity

of the magnetic shear that characterizes the separatrix must be modeled by the use

of artificially peaked current profiles, the asymptotic, singular-layer approach used in

the present paper makes it possible to evaluate the plasma response for any profile of

the safety factor. Furthermore, unlike 3D nonlinear initial-value codes, the singular-

layer analysis makes it possible to use values of the resistivity corresponding to the

experimentally measured plasma parameters. This is highly desirable from the point
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Figure 10. Velocity profiles before (axisym) and after (RMP) the application of the
RMP, and the difference between these velocity profiles calculated from the resonant
forces at the rational surfaces.

of view of interpreting the experimental results, since low collisionality is known to be

necessary for the complete suppression of ELM activity [13,14].

The degree to which the rotation of the plasma inhibits the magnetic reconnection

that is necessary to form islands, such as those that appear in Poincaré maps and are

the root cause of magnetic chaos, is described by the reconnection quotients Sm, where

m = nq labels the resonant surfaces. The screening factor is defined as the ratio of the

amplitude of the perturbed flux in a suppressed island to the perturbed flux for a fully

reconnected island, such as that which theory predicts will be created when the Doppler

frequency of the electron fluid, k · ve, matches the RMP frequency (which vanishes in

most experiments) [54]. The suppression factor is given by the modulus of the inverse

of the normalized matching parameter, Sm = |∆̂|−1.

Our results show that anomalous transport (viscosity and particle diffusivity)

significantly decrease Sm, corresponding to a more complete suppression in the semi-

collisional regime, which is the relevant regime in the edge of experiments with small

collisionality, such as the ITER-similar DIII-D discharges examined here. On the other

hand, the parallel electron compressibility, which is omitted from the MHD model,

acts to screen the parallel electric fields and to concentrate the current in a layer of

width less than the Larmor radius [80]. Neglecting parallel compressibility weakens the

suppression, and can compensate to some degree the neglect of the effects of anomalous

transport.

The resonant forces that the RMP exerts on the plasma are proportional to the

imaginary part of the inverse of the matching parameter, =(∆̂|−1). Since the phase of

∆̂ is generally close to or equal to π/2, the normalized electromagnetic force acting on

the plasma at the resonant surfaces is generally comparable in magnitude to the island

suppression factor. As a result, the resonant torque and the density pumpout can both

be expected to be small when the suppression is strong (Sm � 1). This is the case, in
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particular, in the center of the pedestal.

An important feature of the experiments is the presence of a surface where the

perpendicular component of the electron velocity reverses. Theory predicts that a locked

mode should form easily when this surface crosses a mode-rational surface (q = m/n)

in the course of the normal evolution of the profile during a shot. The absence of the

signatures of locked-mode onset, such as abrupt rotation changes and magnetic impulses

visible on magnetic sensors outside the plasma, could be due to the fact that the natural

rotation velocity of the plasma is already small. An alternative explanation is suggested

by the observations of the locking threshold in TEXTOR, which show that a substantial

threshold persists even when the electron perpendicular velocity vanishes [55, 56]. A

theoretical explanation for these observations remains to be proposed.
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Appendix A: Collisional regimes: ρ� 1

For sufficiently high collisionality, the layer width exceeds the ion-sound Larmor radius

ρs and the layer equation reduces to

d

dk

(
k2

k2 +Qe

dΥ̂

dk

)
−
(
QQi +Qi(D + P )k2 + PDk4

Qe +Dk2

)
k2Υ̂ = 0. (A.1)

Analytic solutions of this equation are known for particular regimes. We briefly review

these here.

Ideal regime:

In the ideal regime the response is localized to the region k2 � Qe. Substituting

Υ̂ = χ̂/k, the layer equation becomes

d2χ̂

dk2
−
(
QQi +Qi(D + P )k2 + PDk4

1 +Dk2/Qe

)
χ̂ = 0.

For D=0 this equation can be solved as follows. Changing variables according to

u =
√
QiPk

2 and χ̂ = e−u/2ŵ, the equation becomes

uŵ′′ + ((1/2− u)ŵ′ − 1

4

[
1−

(
Q2Qi

P

)1/2
]
ŵ = 0.

The solution that is well-behaved at large k is

χ̂(u) = e−u/2U(a/4, 1/2, u),
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where U is the confluent Hypergeometric function of the second kind and a = 1 −
[Q2Qi/P ]1/2. Using the series expansion of U at small k, we find that

∆̂(k) = −π
2

Γ
(

1
4
− 1

4
(Q

2Qi

P
)1/2
)

Γ
(

3
4
− 1

4
(Q

2Qi

P
)1/2
) (QiP )−1/4 (A.2)

For Q2Qi � P , the dispersion relation reduces to

∆̂(k) = −π
2

Γ
(

1
4

)
Γ
(

3
4

) (QiP )−1/4 (A.3)

This is the inviscid resistive regime. In this regime the mode width is of order

δk ' (QiP )−1/4.

In the opposite limit, Q2Qi � P , the dispersion relation is

∆̂(k) = − π√
QQi

(A.4)

This is the ideal inertial regime. The mode width is δk ' (QQi)
−1/2.

Inviscid regime

The inviscid regime corresponds to P = D = 0.

Qe

QQi

d

dk

(
1

k2

dĴ

dk

)
− k2 +Qe

k2
Ĵ = 0. (A.5)

This equation has the solution

Ĵ = e−u/2 U

(
−1

4

(
1−

√
QQiQe

)
,−1

2
, u

)
,

where u = (QQi/Qe)
1/2k2. The matching procedure yields

∆̂ = −π
8

Γ
(

1
4
((QQiQe)

1/2 − 1)
)

Γ
(

1
4
((QQiQe)1/2 + 5)

) (QQi)
1/4Q3/4

e . (A.6)

For QQiQe � 1, we recover the ideal inertial result already obtained in the previous

subsection. The opposite limit, QQiQe � 1, describes the inviscid resistive regime,

∆̂ =
π

2

Γ
(

3
4

)
Γ
(

5
4

) (QQi)
1/4Q3/4

e . (A.7)

In this regime the mode width is δk = (Qe/QQi)
1/4.

Visco-resistive regime

We conclude the analysis of the collisional regimes by considering the case when both

resistivity and viscosity are important. In this case the layer divides into two regions.

For small k, the equation reduces to

d

dk

(
k2

k2 +Qe

dΥ̂

dk

)
= 0,
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with the solution

Υ = −Qe

k
+ k + α,

where α is an unknown integration constant to be determined by matching to the

solution at large k. The equation for large k takes the form

d2Υ̂

dk2
− (P +D)Qi

Qe

k4 Υ̂ = 0. (A.8)

The solution is

Υ = e−u/2 U

(
1

3
,
2

3
, u

)
,

where u = 2((P +D)Qi/Qe)
1/2k3/3. The matching parameter is

∆̂ = π 62/3 Γ
(

5
6

)
Γ
(

1
6

)(PQi)
1/6Q5/6

e . (A.9)

Appendix B: Semi-collisional regimes

Ideal semi-collisional regime

In the ideal semi-collisional regime, P = D = 0, the layer divides into an inner current

channel and a broader layer where the current is much weaker. The mode equation may

be solved separately in each region.

In the inner layer, the mode equation simplifies to

d

dk

[(
Qe +Qiρ

2k2

QQik2

)
dĴ

dk

]
= 0. (A.10)

The solution is

Ĵ = C1
Q

ρ3

√
Qe

Qi

[u− arctan(u)] + C2, (A.11)

where u = kρ
√
Qi/Qe.

In the outer layer, the equation reduces to

ρ2

Q

d2Ĵ

dk2
− Ĵ = 0. (A.12)

with solution

Ĵ = exp(−|k|
√
Q/ρ). (A.13)

Matching these two solutions determines the ratio of the integration constants Cj:

C2

C1

=
π

2

√
Qe

Qi

Q

ρ3
−
√
Q

ρ
.
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Lastly, matching the small-k asymptotic expansion in Eq. (A.11) to Eq. (26) and using

the definition of ∆̂, Eq. (14), yields the desired result:

∆̂ = π
Qe

√
Q

ρ

(
1− π

2ρ2

√
QQe

Qi

)
(A.14)

The first term in Eq. (A.14) represents the standard semi-collisional result, and the

second term is a correction due to polarization currents flowing outside of the central

electron channel. This correction can be important when the constant-A approximation

is violated, as may occur at large β, but we have found that it is generally small for the

range of experimental parameters we have examined.

Diffusive semi-collisional regime

The presence of diffusion modifies the behavior of the solution at large ballooning angle

k, where the layer equation for the electron stream-function becomes

d2Υ̂

dk2
− Dk2

(1 + τ)ρ2
Υ̂ = 0. (A.15)

Changing variables to u = [D/ρ2(1 + τ)]1/2k2 and Υ̂ = w(u) exp(−u/2), the equation

takes the form of the confluent Hypergeometric equation. The solution with the

appropriate decaying behavior for k →∞ is

w(u) = U(1/4, 1/2, u).

Expanding this solution for small k, we find

Υ̂ = π

[
1

Γ(3/4)Γ(1/2)
− u1/2 1

Γ(1/4)Γ(3/2)

]
.

Matching to the small-k asymptotic solution yields the dispersion relation,

∆̂(Q) = 2π
Γ
(

3
4

)
Γ
(

1
4

) ( D

ρ2(1 + τ)

)1/4

Qe. (A.16)

This dispersion relation agrees well with the numerical solutions in its regime of validity.
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